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Generative models for discovering sparse distributed
representations

GEOFFREY E. HINTON AND ZOUBIN GHAHRAMANI

Department of Computer Science, University ofToronto,Toronto, Ontario, Canada M5S 1A4

SUMMARY

We describe a hierarchical, generative model that can be viewed as a nonlinear generalization of factor
analysis and can be implemented in a neural network. The model uses bottom-up, top-down and lateral
connections to perform Bayesian perceptual inference correctly. Once perceptual inference has been
performed the connection strengths can be updated using a very simple learning rule that only requires
locally available information.We demonstrate that the network learns to extract sparse, distributed, hier-
archical representations.

1. INTRODUCTION

Many neural network models of visual perception
assume that the sensory input arrives at the bottom,
visible layer of the network and is then converted by
feedforward connections into successively more abstract
representations in successive hidden layers. Such
models are biologically unrealistic because they do not
allow for top-down e¡ects when perceiving noisy or
ambiguous data (Mumford 1994; Gregory 1970) and
they do not explain the prevalence of top-down
connections in the cortex.

In this paper, we take seriously the idea that vision is
inverse graphics (Horn 1977) and so we start with a
stochastic, generative neural network that uses top-down
connections to convert an abstract representation of a
scene into an intensity image.This neurally instantiated
graphics model is learned and the top-down connection
strengths contain the network's visual knowledge of the
world.Visual perception consists of inferring the under-
lying state of the stochastic graphics model using the
false but useful assumption that the observed sensory
input was generated by the model. Since the top-down
graphics model is stochastic there are usually many
di¡erent states of the hidden units that could have
generated the same image, though some of these
hidden state con¢gurations are typically much more
probable than others. For the simplest generative
models, it is tractable to represent the entire posterior
probability distribution over hidden con¢gurations
that results from observing an image. For more
complex models, we shall have to be content with a
perceptual inference process that picks one or a few
con¢gurations roughly according to their posterior
probabilities (Hinton & Sejnowski 1983).

One advantage of starting with a generative model is
that it provides a natural speci¢cation of what visual
perception ought to do. For example, it speci¢es

exactly how top-down expectations should be used to
disambiguate noisy data without unduly distorting
reality. Another advantage is that it provides a sensible
objective function for unsupervised learning. Learning
can be viewed as maximizing the likelihood of the
observed data under the generative model. This is
mathematically equivalent to discovering e¤cient
ways of coding the sensory data, because the data
could be communicated to a receiver by sending the
underlying states of the generative model and this is an
e¤cient code if and only if the generative model assigns
high probability to the sensory data.

In this paper we present a sequence of progressively
more sophisticated generative models. For each model,
the procedures for performing perceptual inference and
for learning the top-down weights follow naturally
from the generative model itself. We start with two
very simple models, factor analysis and mixtures of
Gaussians, that were ¢rst developed by statisticians.
Many of the existing models of how the cortex learns
are actually even simpler versions of these statistical
approaches in which certain variances have been set to
zero.We explain factor analysis and mixtures of Gaus-
sians in some detail. To clarify the relationships
between these statistical methods and neural network
models, we describe the statistical methods as neural
networks that can both generate data using top-down
connections and perform perceptual interpretation of
observed data using bottom-up connections. We then
describe a historical sequence of more sophisticated
hierarchical, nonlinear generative models and the
learning algorithms that go with them. We conclude
with a new model, the recti¢ed Gaussian belief net,
and present examples where it is very e¡ective at disco-
vering hierarchical, sparse, distributed representations
of the type advocated by Barlow (1989) and Olshausen
& Field (1996). The new model makes strong sugges-
tions about the role of both top-down and lateral
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connections in the cortex and it also suggests why topo-
graphic maps are so prevalent.

2 . MIXTURES OF GAUSSIANS

A mixture of Gaussians is a model that describes
some real data points in terms of underlying Gaussian
clusters. There are three aspects of this model which we
shall discuss. First, given parameters that specify the
means, variances and mixing proportions of the clus-
ters, the model de¢nes a generative distribution which
assigns a probability to any possible data point.
Second, given the parameter values and a data point,
the perceptual interpretation process infers the
posterior probability that the data came from each of
the clusters. Third, given a set of observed data points,
the learning process adjusts the parameter values to
maximize the probability that the generative model
would produce the observed data.

Viewed as a neural network, a mixture of Gaussians
consists of a layer of visible units whose state vector
represents a data point and a layer of hidden units
each of which represents a cluster (see ¢gure 1). To
generate a data point we ¢rst pick one of the hidden
units, j, with a probability �j and give it a state sj � 1.
All other hidden states are set to 0. The generative
weight vector of the hidden unit, g j, represents the
mean of a Gaussian cluster. When unit j is activated it
sends a top-down input of gji to each visible unit, i.
Local, zero-mean, Gaussian noise with variance �2i is
added to the top-down input to produce a sample from
an axis-aligned Gaussian that has mean gj and a covar-
iance matrix that has the �2i terms along the diagonal
and zero elsewhere. The probability of generating a
particular vector of visible states, d with elements di, is
therefore

p�d� �P
j
�j
Q
i

1���������
2��i
p e

ÿ(diÿgji)2=2�2i . (1)

Interpreting a data point, d, consists of computing
the posterior probability that it was generated from
each of the hidden units, assuming that it must have
come from one of them. Each hidden unit, j, ¢rst
computes the probability density of the data point
under its Gaussian model:

p�djsj � 1� �Q
i

1���������
2��i
p eÿ(diÿgji)

2=2�2i . (2)

These conditional probabilities are then weighted by
the mixing proportions, �j, and normalized to give the
posterior probability or responsibility of each hidden unit,
j, for the data point. By Bayes theorem:

p�sj � 1jd� � �jp(djsj � 1)
�k�kp(djsk � 1)

(3)

The computation of p(djsj � 1) in equation (2) can
be done very simply by using recognition connections, rij,
from the visible to the hidden units. The recognition
connections are set equal to the generative connections,
rij � gji. The normalization in equation (3) could be
done by using direct lateral connections or interneur-
ones to ensure that the total activity in the hidden
layer is a constant.

Learning consists of adjusting the generative para-
meters g, �,� so as to maximize the product of the
probabilities assigned to all the observed data points
by equation (1). An e¤cient way to perform the
learning is to sweep through all the observed data
points computing p(sj � 1jd) for each hidden unit and
then to reset all the generative parameters in parallel.
Angle brackets are used to denote averages over the
training data:

gj(new) � hp(sj � 1jd)di=hp(sj � 1jd)i, (4)

�2i �new� �
�P

j
p(sj � 1jd)(di ÿ gji)

2

�
, (5)

�j(new) � hp(sj � 1jd)i. (6)

This is a version of the èxpectation and maximiza-
tion' algorithm (Dempster et al. 1977) and is
guaranteed to raise the likelihood of the observed data
unless it is already at a local optimum. The computa-
tion of the posterior probabilities of the hidden states
given the data (i.e. perceptual inference) is called the
E-step and the updating of the parameters is called
the M-step.

Instead of performing an M-step after a full sweep
through the data it is possible to use an on-line gradient
algorithm that uses the same posterior probabilities of
hidden states but updates each generative weight using
a version of the delta rule with a learning rate of �:

�gji � � p(sj � 1jd)(di ÿ gji). (7)

The k-means algorithm (a form of vector quantiza-
tion) is the limiting case of a mixture of Gaussians
model where the variances are assumed equal and in¢-
nitesimal and the �j are assumed equal. Under these
assumptions the posterior probabilities in equation (3)
go to binary values with p(sj � 1jd) � 1 for the Gaus-
sian whose mean is closest to d and 0 otherwise.
Competitive learning algorithms (e.g. Rumelhart &
Zipser 1985) can generally be viewed as ways of ¢tting
mixture of Gaussians generative models. They are
usually ine¤cient because they do not use a full M-
step and slightly wrong because they pick a single
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winner among the hidden units instead of making the
states proportional to the posterior probabilities.

Kohonen's self-organizing maps (Kohonen 1982),
Durbin & Willshaw's elastic net (1987), and the genera-
tive topographic map (Bishop et al. 1997) are variations
of vector quantization or mixture of Gaussian models in
which additional constraints are imposed that force
neighbouring hidden units to have similar generative
weight vectors. These constraints typically lead to a
model of the data that is worse when measured by
equation (1). So in these models, topographic maps are
not a natural consequence of trying to maximize the
likelihood of the data. They are imposed on the
mixture model to make the solution easier to interpret
and more brain-like. By contrast, the algorithm we
present later has to produce topographic maps to maxi-
mize the data likelihood in a sparsely connected net.

Because the recognition weights are just the trans-
pose of the generative weights and because many
researchers do not think in terms of generative models,
neural network models that perform competitive
learning typically only have the recognition weights
required for perceptual inference. The weights are
learned by applying the rule that is appropriate for the
generative weights.This makes the model much simpler
to implement but harder to understand.

Neural net models of unsupervised learning that are
derived from mixtures have simple learning rules and
produce representations that are a highly nonlinear
function of the data, but they su¡er from a disastrous
weakness in their representational abilities. Each data
point is represented by the identity of the winning
hidden unit (i.e. the cluster it belongs to). So for the
representation to contain, on average, n bits of informa-
tion about the data, there must be at least 2n hidden
units. (This point is often obscured by the fact that the
posterior distribution is a vector of real-valued states
across the hidden units. This vector contains a lot of
information about the data and supervised radial basis
function networks make use of this rich information.
However, from the generative or coding viewpoint, the
posterior distribution must be viewed as a probability
distribution across discrete impoverished representa-
tions, not a real-valued representation.)

3. FACTOR ANALYSIS

In factor analysis, correlations among observed vari-
ables are explained in terms of shared hidden variables
called factors which have real-valued states. Viewed as
a neural network, the generative model underlying a
standard version of factor analysis assumes that the
state, yj of each hidden unit, j, is chosen independently
from a zero-mean, unit-variance Gaussian and the
state, di, of each visible unit, i, is then chosen from a
Gaussian with variance �2i and mean

P
j yjgji. So the

only di¡erence from the mixture of Gaussians model is
that the hidden state vectors are continuous and Gaus-
sian distributed rather than discrete vectors that
contain a single 1.

The probability of generating a particular vector of
visible states, d, is obtained by integrating over all

possible states, y, of the hidden units, weighting each
hidden state vector by its probability under the genera-
tive model:

p(d) �
�
p(y)p(dj y)dy (8)

�
� Q

j

1������
2�
p eÿy

2
j
=2Q

i

1���������
2��i
p eÿ(diÿ�j yjgji)2=2�2i dy.

(9)

Because the network is linear and the noise is Gaus-
sian, this integral is tractable.

Maximum likelihood factor analysis (Everitt 1984)
consists of ¢nding generative weights and local noise
levels for the visible units so as to maximize the likeli-
hood of generating the observed data. Without loss of
generality, the generative noise model for the hidden
units can be set to be a zero mean Gaussian with a
covariance equal to the identity matrix.

(a) Computing posterior distributions

Given some generative parameters and an observed
data point, the perceptual inference problem is to
compute the posterior distribution in the continuous
hidden space. This is not as simple as computing the
discrete posterior distribution for a mixture of Gaus-
sians model. Fortunately, the posterior distribution in
the continuous factor space is a Gaussian whose mean
depends linearly on the data point and can be
computed using recognition connections.

There are several reasons why the correct recogni-
tion weights are not, in general, equal to the
generative weights. Visible units with lower local noise
variances will have larger recognition weights, all else
being equal. But even if all the visible noise variances
are equal, the recognition weights need not be propor-
tional to the generative weights because the generative
weight vectors of the hidden units (known as the factor
loadings) do not need to be orthogonal. (If an invertible
linear transformation, L, is applied to all the generative
weight vectors and L71 is applied to the prior noise
distribution of the hidden units, the likelihood of the
data is una¡ected. The only consequence is that L71

gets applied to the posterior distributions in hidden
space. This means that the generative weight vectors
can always be forced to be orthogonal, but only if a
full covariance matrix is used for the prior.) Generative
weight vectors that are not orthogonal give rise to a
very important phenomenon known as èxplaining
away' that occurs during perceptual inference (Pearl
1988).

Suppose that the visible units all have equal noise
variances and that two hidden units have generative
weight vectors that have a positive scalar product.
Even though the states of the two hidden units are
uncorrelated in the generative model, they will be
anti-correlated in the posterior distribution for a given
data point. When one of the units is highly active it
èxplains' the part of the data point that projects on to
it and so there is no need for the other hidden unit to be
so active (¢gure 2). By using appropriate recognition
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weights it is possible to correctly handle the data-
dependent e¡ects of explaining away on the mean of
the posterior distribution. But learning these recogni-
tion weights in a neural net is tricky (Neal & Dayan
1996).

When the generative weight vectors of the hidden
units are not orthogonal, the posterior probability
distribution in hidden space has a full covariance
matrix. This matrix does not depend on the data, but
it does depend on the generative weights (¢gure 2).
The di¤culty of representing and computing this full
covariance posterior in a neural network probably
explains why factor analysis has seldom been put
forward as a neural model. However, a simpli¢ed
version of factor analysis called principal components
analysis has been very popular. As we shall see in } 7 c,

a sensible neural network implementation of factor
analysis is possible and the new model we present in
} 7 is a nonlinear generalization of it.

(b) Principal components analysis

Just as mixtures of Gaussians can be reduced to
vector quantization by making the variances of the
Gaussians equal and in¢nitesimal, factor analysis can
be reduced to principal components analysis by letting
the variances associated with the visible units be equal
and in¢nitesimal, and the variances associated with the
hidden units be non-in¢nitesimal. In this limiting case,
the posterior distribution in the hidden space shrinks to
a single point. If the generative weight vectors are
forced to be orthogonal, this point can be found by
projecting the data on to the plane spanned by the
generative weight vectors, and the weight matrix that
does this projection is just the transpose of the genera-
tive weight matrix. Principal components analysis has
several advantages over full factor analysis as a neural
network model. It eliminates the need to compute or
represent a full covariance posterior distribution in the
hidden state space, and it makes the recognition
weights that convert data into hidden representations
identical to the generative weights, so the neural
network does not need to explicitly represent the
generative weights. However, the price of this simpli-
city is that it cannot be generalized to multilayer,
nonlinear, stochastic, generative models.

4 . THE NEED FOR SPARSE DISTRIBUTED
REPRESENTATIONS

Factor analysis and mixtures of Gaussians are at
opposite ends of a spectrum of possible learning algo-
rithms. In factor analysis, the representation is
componential or distributed because it involves states of all
of the hidden units. However, it is also linear and is
therefore limited to capturing the information in the
pairwise covariances of the visible units. All the
higher-order structure is invisible to it. At the other
end of the spectrum, mixtures of Gaussians have
localist representations because each data point is
assumed to be generated from a single hidden unit.
This is an exponentially ine¤cient representation, but
it is nonlinear and with enough hidden units it can
capture all of the higher-order structure in the data.
(If the structure involves multiple interacting causes, a
mixture of Gaussians models cannot make the separate
causes explicit in the hidden units, but it can model the
probability density to any accuracy required.)

The really interesting generative models lie in the
middle of the spectrum.They use nonlinear distributed
representations. To see why such representations are
needed, consider a typical image that contains multiple
objects. To represent the pose and deformation of each
object we want a componential representation of
the object's parameters. To represent the multiple
objects we need several of these componential represen-
tations at once.

There is another way of thinking about the advan-
tages of sparse distributed representations. It is
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Figure 2. (a) The hidden-to-visible generative weights, and
the hidden and visible local noise variances for a simple
factor analysis model. (b) The surprising visible-to-hidden
recognition weights that compute the data-dependent
mean of the posterior distribution in the two-dimensional
hidden space. (c) Samples from the posterior distribution
in hidden space given the data point (1,1). The covariance
of the posterior depends on the scalar product of the genera-
tive weight vectors of the two hidden units. In this example
the positive scalar product leads to explaining away, which
shows up as a negative correlation of the two hidden vari-
ables.
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advantageous to represent images in terms of basis
functions (as factor analysis does), but for di¡erent
classes of images, di¡erent basis functions are appro-
priate. So it is useful to have a large repertoire of basis
functions and to select the subset that are optimal for
representing the current image.

If an e¤cient algorithm can be found for ¢tting
models of this type it is likely to prove even more
fruitful than the e¤cient back-propagation algorithm
for multilayer nonlinear regression (Rumelhart et al.
1986). The di¤culty lies in the computation of the
posterior distribution over hidden states when given a
data point. This distribution, or an approximation to
it, is required both for learning the generative model
and for perceptual inference once the model has been
learned. Mixtures of Gaussians and factor analysis are
standard statistical models precisely because the exact
computation of the posterior distribution is tractable.

5. FROM BOLTZMANN MACHINES TO
LOGISTIC BELIEF NETS

The Boltzmann machine (Hinton & Sejnowski 1986)
was, perhaps, the ¢rst neural network learning algo-
rithm to be based on an explicit generative model that
used distributed, nonlinear representations. Boltzmann
machines use stochastic binary units and, with h hidden
units, the number of possible representations of each
data point is 2h. It would take exponential time to
compute the posterior distribution across all of these
possible representations and most of them would typi-
cally have probabilities very close to 0, so the
Boltzmann machine uses a Monte-Carlo method
known as Gibbs sampling (Hinton & Sejnowski 1983;
Geman & Geman 1984) to pick stochastically represen-
tations according to their posterior probabilities. Both
the Gibbs sampling for perceptual inference and the
learning rule for following the gradient of the log like-
lihood of the data are remarkably simple to implement
in a network of symmetrically connected stochastic
binary units. Unfortunately, the learning algorithm is
extremely slow and, as a result, the unsupervised form
of the algorithm never really succeeded in extracting
interesting hierarchical representations.

The Boltzmann machine learning algorithm is slow
for two reasons. First, the perceptual inference is slow
because it must spend a long time doing Gibbs
sampling before the probabilities are correct. Second,
the learning signal for the weight between two units is
the di¡erence between their sampled correlation in two
di¡erent conditions. When the two correlations are
similar, the sampling noise makes their di¡erence
extremely noisy.

Neal (1992) realized that learning is considerably
more e¤cient if, instead of symmetric connections, the
generative model uses directed connections that form
an acyclic graph. This kind of generative model is
called a belief network and it has an important prop-
erty that is missing in models whose generative
connections form cycles: it is straightforward to
compute the joint probability of a data point and a
con¢guration of states of all the hidden units. In a
Boltzmann machine, this probability depends not only

on the particular hidden states but also on an additional
normalization term called the partition function that
involves all possible con¢gurations of states. It is the
derivatives of the partition function that make Boltz-
mann machine learning so ine¤cient.

Neal investigated logistic belief nets (LBN) that
consist of multiple layers of binary stochastic units
(¢gure 3). To generate data, each unit, j, picks a binary
state, sj, based on a top-down expectation ŝj which is
determined by its generative bias, g0j, the binary states
of units, k, in the layer above and the weights on the
generative connections coming from those units:

p(sj � 1) � ŝj � �(g0j �
P

k sk gkj), (10)

where �(x) � (1� exp(ÿ x))ÿ1.

(a) Perceptual inference in a logistic belief net

As with Boltzmann machines, it is exponentially
expensive to compute the exact posterior distribution
over the hidden units of an LBN when given a data
point, so Neal used Gibbs sampling. With a particular
data point clamped on the visible units, the hidden
units are visited one at a time. Each time hidden unit u
is visited, its state is stochastically selected to be 1or 0 in
proportion to two probabilities. The ¢rst, P�jsu�1, is the
joint probability of generating the states of all the units
in the network (including u) if u has state 1 and all the
others have the state de¢ned by the current con¢gura-
tion of states, a. The second, P�jsu�0, is the same
quantity if u has state 0. When calculating these prob-
abilities, the states of all the other units are held
constant. It can be shown that repeated application of
this stochastic decision rule eventually leads to hidden
state con¢gurations being selected according to their
posterior probabilities.

Because the LBN is acyclic it is easy to compute the
joint probability P a of a con¢guration, a, of states of all
the units. The units that send generative connections to
unit i are called the `parents'of i and we denote the states
of these parents in global con¢guration aby pa(i, a):

Generative models for discovering sparse distributed representations G. E. Hinton and Z. Ghahramani 1181
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P � �Q
i
p(s�i jpa(i,�)), (11)

where s�i is the binary state of unit i in con¢guration a.
It is convenient to work in the domain of negative log

probabilities which are called energies by analogy with
statistical physics.We de¢ne E� to be ÿln P�,

E� � ÿP
u
(s�u ln ŝ

�
u � (1ÿ s�u )ln(1ÿ ŝ�u )), (12)

where s�u is the binary state of unit u in con¢guration a,
ŝ�u is the top-down expectation generated by the layer
above, and u is an index over all the units in the net.

The rule for stochastically picking a new state for u
requires the ratio of two probabilities and hence the
di¡erence of two energies

�E�
u � E�jsu�0 ÿ E�jsu�1, (13)

p (su � 1j�) � �(�E�
u ). (14)

All the contributions to the energy of con¢guration �
that do not depend on sj can be ignored when
computing �E�

j . This leaves a contribution that
depends on the top-down expectation ŝj generated by
the units in the layer above (see equation (10)) and a
contribution that depends on both the states, si and the
top-down expectations, ŝi, of units in the layer below
(¢gure 3)

�E�
j � ln ŝ�j ÿ ln(1ÿ ŝ�j )

�P
i
�s�i ln ŝ�jsj�1i � (1ÿ s�i ) ln(1ÿ ŝ

�jsj�1
i )

(15)

ÿ s�i ln ŝ
�jsj�0
i ÿ (1ÿ s�i )ln(1ÿ ŝ

�jsj�0
i ) �.

Given samples from the posterior distribution, the
generative weights of a LBN can be learned by using
the on-line delta rule which performs gradient ascent
in the log likelihood of the data:

�gji � �sj(si ÿ ŝi). (16)

Until very recently (Lewicki & Sejnowski 1997),
logistic belief nets were widely ignored as models of
neural computation.This may be because the computa-
tion of�E�

j in equation (15) requires unit j to observe not
only the states of units in the layer below but also their
top-down expectations. In } 7 c we show how this
problem can be ¢nessed but ¢rst we describe an alterna-
tiveway of making LBNsbiologically plausible.

6. THE WAKE ^ SLEEP ALGORITHM

There is an approximate method of performing
perceptual inference in a LBN that leads to a very
simple implementation which would be biologically
quite plausible if only it were better at extracting the
hidden causes of data (Hinton et al. 1995). Instead of
using Gibbs sampling, we use a separate set of bottom-
up recognition connections to pick binary states for
units in one layer given the already selected binary
states of units in the layer below. The learning rule for
the top-down generative weights is the same as for an
LBN. It can be shown that this learning rule, instead
of following the gradient of the log likelihood now

follows the gradient of the penalized log likelihood
where the penalty term is the Kullback^Liebler diver-
gence between the true posterior distribution and the
distribution produced by the recognition connections.
The penalized log likelihood acts as a lower bound on
the log likelihood of the data and the e¡ect of learning
is to improve this lower bound. In attempting to raise
the bound, the learning tries to adjust the generative
model so that the true posterior distribution is as close
as possible to the distribution actually computed by the
recognition weights.

The recognition weights are learned by introducing a
`sleep' phase in which the generative model is run top-
down to produce fantasy data. The network knows the
true hidden causes of the fantasy data and the recogni-
tion connections are adjusted to maximize the
likelihood of recovering these causes. This is just a
simple application of the delta rule where the learning
signal is obtained by comparing the probability that the
recognition connections would turn a unit on with the
state it actually had when the fantasy data was gener-
ated.

The attractive properties of the wake^sleep algo-
rithm are that the perceptual inference is simple and
fast, and the learning rules for the generative and
recognition weights are simple and entirely local.
Unfortunately it has some serious disadvantages.
(i) The recognition process does not do correct prob-

abilistic inference based on the generative model. It
does not handle explaining away in a principled
manner and it does not allow for top-down e¡ects in
perception.

(ii) The sleep phase of the learning algorithm only
approximately follows the gradient of the penalized
log likelihood.

(iii) Continuous quantities such as intensities, dis-
tances or orientations have to be represented using
stochastic binary neurones, which is ine¤cient.

(iv) Although the learning algorithm works reason-
ably well for some tasks, considerable parameter-
tweaking is necessary to get it to produce easily
interpretable hidden units on toy tasks such as the one
described in ½ 8. On other tasks, such as the one
described in ½ 9, it consistently fails to capture obvious
hidden structure. This is probably because of its inabil-
ity to handle explaining away correctly.

7. RECTIFIED GAUSSIAN BELIEF NETS

We now describe a new model called the recti¢ed
Gaussian belief net (RGBN) which seems to work
much better than the wake^sleep algorithm. The
RGBN uses units with states that are either positive
real values or zero, so it can represent real-valued
latent variables directly. Its main disadvantage is that
the recognition process involves Gibbs sampling which
could be very time consuming. In practice, however,
ten to 20 samples per unit have proved adequate for
some small but interesting tasks.

We ¢rst describe the RGBN without considering
neural plausibility. Then we show how lateral inter-
actions within a layer can be used to perform
explaining away correctly. This makes the RGBN far
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more plausible as a neural model and leads to a very
natural explanation for the prevalence of topographic
maps in cortex.

The generative model for RGBNs consists of multiple
layers of units each of which has a real-valued unrecti-
¢ed state, yj, and a recti¢ed state, � yj�� � max( yj, 0).
This recti¢cation is the only nonlinearity in the
network. The value of yj is Gaussian distributed with a
standard deviation �j and mean, ŷj that is determined
by the generative bias, g0j, and the combined e¡ects of
the recti¢ed states of units, k, in the layer above:

ŷj � g0j �
P
k
� yk��gkj. (17)

Given the states of its parents, the recti¢ed state � yj��
therefore has a Gaussian distribution above zero, but all
of the mass of the Gaussian that falls below zero is
concentrated in an in¢nitely dense spike at zero as
shown in ¢gure 4.This in¢nite density creates problems
if we attempt to use Gibbs sampling over the recti¢ed
states, so we perform Gibbs sampling on the unrecti¢ed
states.

(a) Sampling from the posterior distribution in an
RGBN

Consider a unit, j, in some intermediate layer of a
multilayer RGBN (¢gure 3). Suppose that we ¢x the
unrecti¢ed states of all the other units in the net. (Actu-
ally it is only necessary to ¢x the unrecti¢ed states of
units in the layer above that send a generative connec-
tion to j, units in the layer below to which j sends a
generative connection, and units in the same layer that
send generative connections to units directly a¡ected by
j.) To perform Gibbs sampling, we need to stochastically
select a value for yj according to its posterior distribu-
tion given the unrecti¢ed states of all the other units.
If we think in terms of energies that correspond to

negative log probabilities, the recti¢ed states of the
units in the layer above contribute a quadratic energy
term by determining ŷj. The unrecti¢ed states of units,
i, in the layer below contribute nothing if � yj�� is 0, and
if � yj�� is positive they each contribute a quadratic term
because of the e¡ect of � yj�� on ŷi,

E( yj) �
( yj ÿ ŷj)

2

2�2j
�P

i

( yi ÿ�h� yh��ghi)2
2�2i

, (18)

where h is an index over all the units in the same layer
as j including j itself, so yj in£uences the right-hand side
of equation (18) via � yj�� � max( yj, 0). Terms that do
not depend on yj have been omitted from equation
(18). For values of yj below zero there is a quadratic
energy function which leads to a Gaussian posterior
distribution. The same is true for values of yj above
zero, but it is a di¡erent quadratic (¢gure 5b). The
Gaussian posterior distributions corresponding to the
two quadratics must agree at yj � 0 (¢gure 5a).
Because the posterior distribution is piecewise Gaussian
it is possible to perform Gibbs sampling exactly and
fairly e¤ciently (see the appendix).

(b) Learning the parameters of a RGBN

Given samples from the posterior distribution, the
generative weights of a RGBN can be learned by using
the on-line delta rule to perform gradient ascent in the
log likelihood of the data:

�gji � � � yj��( yi ÿ ŷi). (19)

The variance of the local Gaussian noise of each unit,
�2j , can be learned by an on-line rule:

��2j � � �( yj ÿ ŷj)
2 ÿ �2j �. (20)

Alternatively, �2j can be ¢xed at one for all hidden
units and the e¡ective local noise level can be
controlled by scaling the generative weights.

(c) The role of lateral connections

Lee & Seung (1997) introduced a clever trick in
which lateral connections are used to handle explaining
away e¡ects. The trick is most easily understood for a
linear generative model of the type used in factor
analysis. One contribution, Ebelow, to the energy of the
state of the network is the squared di¡erences between
the states of the units in the bottom layer, yj, and the
top-down expectations, ŷj generated by the states of
units in the layer above. Another contribution, Eabove,
is the squared di¡erence between the states in the top
layer, yk, and their top-down expectations, ŷk. Assuming
the local noise models for the lower layer units all have
unit variance, and ignoring biases and constant terms
that are una¡ected by the states of the units
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Figure 4. The recti¢ed Gaussian.
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Figure 5. (a) Schematic of the posterior density of an unrec-
ti¢ed state of a unit. (b) Bottom-up and top-down energy
functions corresponding to (a).
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Ebelow �
P
j
( yj ÿ ŷj)

2 �P
j
( yj ÿ�

k
ykgkj)

2. (21)

This expression can be rearranged to give

Ebelow �
P
j
y2j ÿ 2

P
k
yk
P
j
yjgkj ÿ

P
k

P
l
yk yl(ÿ�jgkjglj).

(22)

Setting rjk � gkj and mkl � ÿ
P

jgkjglj, we get

Ebelow �
P
j
y2j ÿ 2

P
k
yk
P
j
yjrjk ÿ

P
k
yk
P
l
ylmkl. (23)

The way in which Ebelow depends on each activity in
the layer above, yk, is determined by the second and
third terms in equation (23). So if unit k computes
�j yjrjk using the bottom-up recognition connections,
and �l ylmkl using the lateral connections it has all of
the information it requires about Ebelow to perform
Gibbs sampling in the potential function Ebelow +
Eabove (¢gure 6).

If we are willing to use Gibbs sampling, Seung's trick
allows a proper implementation of factor analysis in a
neural network because it makes it possible to sample
from the full covariance posterior distribution in the
hidden state space. Seung's trick can also be used in a
RGBN and it eliminates the most neurally implausible
aspect of this model which is that a unit in one layer
appears to need to send both its state y and the top-
down prediction of its state ŷ to units in the layer
above. Using the lateral connections, the units in the
layer above can, in e¡ect, compute all they need to
know about the top-down predictions. The actual
computation that needs to take place inside the unit is
non-trivial, but the communication with other units is
simple.

There is one remaining di¤culty that is a conse-
quence of our decision to perform Gibbs sampling on
the unrecti¢ed states. A unit needs to send its unrecti-
¢ed state to units in the layer above and its recti¢ed
state to units in the layer below. Currently, we do not
know how to ¢x this di¤culty.

(d) Learning the lateral and recognition
connections

In computer simulations, we can simply set each
lateral connection mkl to be ÿ�jgkjglj. The same e¡ect

can be achieved in a more biologically plausible way.
Suppose units in one layer are driven by independent,
unit-variance Gaussian noise and are allowed to drive
units in the layer above using recognition weights that
are equal to the generative weights. The covariance of
the states yk and yl of two units in the layer above will
be equal to �jgkjglj. The lateral interaction can then be
learned by a simple anti-Hebbian rule:

�mkl � � (ÿ mkl ÿ yk yl). (24)

A similar approach can be used to set rjk equal to gkj.
If units in one layer are driven by independent, unit-
variance Gaussian noise and their generative weights
are used to drive units in the layer below, then the
covariance of yk and yi will equal gkj and Hebbian
learning can be used to set rjk:

�rjk � � (ÿ rjk � yj yk). (25)

Slightly more complicated rules are needed if states
cannot be negative and there are probably many other
relatively simple ways of achieving the same end. The
point of presenting this simple rule is to show that it is
not a major problem to learn the appropriate lateral
and recognition connections because they are related
to the generative weights in such a simple way.

(e) A reason for topographic maps

It is infeasible to interconnect all pairs of units in a
cortical area. If we assume that direct lateral inter-
actions (or interactions mediated by interneurones) are
primarily local, then widely separated units will not
have the connections required for explaining away.
Consequently the computation of the posterior distri-
bution will be incorrect unless the generative weight
vectors of widely separated units are orthogonal. If the
generative weights are constrained to be positive, the
only way two vectors can be orthogonal is for one to
have zeros where the other has non-zeros. It follows
that widely separated units must attend to di¡erent
parts of the image and units can only attend to overlap-
ping patches if they are laterally interconnected. We
have not described a mechanism for the formation of
topographic maps, but we have given a good computa-
tional reason for their existence.

8 . RESULTS ON A TOY TASK

A simple problem that illustrates the need for sparse
distributed representations is the noisy bars problem
(Hinton et al. 1995). Consider the following multistage
generative model for K6K images. The top level
decides with equal probabilities whether the image will
consist solely of vertical or horizontal bars. Given this
choice, the second level decides independently for each
of the K bars of the appropriate orientation whether it
is present or not, with a probability of 0.3 of being
present. If a bar is present, its intensity is determined
by a uniformly distributed random variable. Finally,
independent Gaussian noise is added to each pixel in
the image. Sample images generated from this process
are shown in ¢gure 7a.
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Figure 6. A network that, in addition to the generative
connections, has bottom-up and lateral connections for
performing perceptual inference.
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We trained a three-layer RGBN consisting of 36
visible units, 24 units in the ¢rst hidden layer and one
unit in the second hidden layer on the 666 bars
problem. While there are 126 combinations of possible
bars (not accounting for the real-valued intensities and
Gaussian noise), a distributed representation with only
12 hidden units in the ¢rst layer can capture the
presence or absence of each bar. With this representa-
tion in the ¢rst hidden layer, the second hidden layer
can then capture higher-order structure by detecting
that vertical bars are correlated with other vertical
bars and not with horizontal bars.

The network was trained for ten passes through a
data set of 1000 images using a di¡erent, random
order for each pass. For each image we used 16 itera-
tions of Gibbs sampling to approximate the posterior
distribution over hidden states. Each iteration
consisted of sampling every hidden unit once in a
¢xed order. The states on every other iteration were
used for learning, with a learning rate of 0.1 and a
weight decay parameter of 0.01. Since the top level of
the generative process makes a discrete decision
between vertical and horizontal bars, we tried both
the RGBN and a trivial extension of the RGBN in
which the top level unit saturates both at zero and
one. This resulted in slightly cleaner representations
at the top level. Results were relatively insensitive to
other parametric changes.

After learning, each of the 12 possible bars is repre-
sented by a separate unit in the ¢rst hidden layer
(¢gure 8c). The remaining hidden units in that layer
are kept inactive through strong inhibitory biases
(¢gure 8b). The unit in the top hidden layer strongly
excites the vertical bar units in the ¢rst hidden layer,
and inhibits the horizontal bar units. Indeed, when
presented with images and allowed to randomly
sample its states for ten Gibbs samples, the top unit is
active for 85% of novel images containing vertical
bars and inactive for 89% of images containing hori-
zontal bars. A random sample of images produced by
generating from the model after learning is shown in
¢gure 7b.

As a control, it is interesting to examine the results
produced by a mixture of Gaussians and a factor
analyser trained on the same data. A factor analyser
with 24 hidden units discovers global features with
both excitatory and inhibitory components (¢gure 9a).
The representation is distributed, but not sparse. In
contrast, the mixture of Gaussians discovers 24 good
prototypes for the images (¢gure 9b). While some
single bar images are represented in the hidden units,
others represent frequent combinations of bars. More
importantly, in order to capture all 126 combinations
of possible bar locations the mixture of Gaussians
network would need 126 hidden units. The representa-
tion is sparse but not distributed.

9. DISCOVERING DEPTH IN SIMPLIFIED
STEREO PAIRS

Another problem in which discovering the higher-
order structure of a dataset has presented di¤culties
for some previous unsupervised learning algorithms is
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Figure 7 (a) Sample data from the 666 noisy bars problem.
(b) Sample outputs generated by the model after learning.
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the one-dimensional stereo disparity problem (Becker
& Hinton 1992). We tested the RGBN on a version of
this problem with the following generative process.
Random dots of uniformly distributed intensities are
scattered sparsely on a one-dimensional surface, and
the image is blurred with a Gaussian ¢lter. This
surface is then randomly placed at one of two di¡erent
depths, giving rise to two possible left-to-right dispari-
ties between the images seen by each eye. Separate
Gaussian noise is then added to the image seen by each
eye. Eight example images generated in this manner
are shown in ¢gure 10a.
Using the very same architecture and training para-

meters as in the previous example, we trained an
RGBN on images from this stereo disparity problem.
As in the previous example, each of the 24 hidden
units in the ¢rst hidden layer was connected to the
entire array of 36 visible units, i.e. it had inputs from
both eyes. Twelve of these hidden units learned to
become local left-disparity detectors, while the other
twelve became local right-disparity detectors (¢gure
11c). Unlike the previous problem, in which there
were too many hidden units for the problem, here
there were too few for the 18 pixel locations. The unit
in the second hidden layer has positive weights
connecting it to leftward disparity detecting hidden
units in the layer below, and negative weights for the
rightward units (¢gure 11a). When presented with
novel input images the top unit is active for 87% of
images with leftward disparity and inactive for 91%
of images with rightward disparity. A random sample
of images generated by the model after learning is
shown in ¢gure 10b.

10. DISCUSSION

The units used in an RGBN have a number of
di¡erent properties and it is interesting to ask which of
these properties are essential and which are arbitrary. If
we want to achieve neural plausibility by using lateral
interactions to handle explaining away, it is essential
that Gaussian noise is used to convert ŷj into yj in the
generative model. Without this, the expression for
Ebelow in equation (21) would not be quadratic and it
would not be possible to take the summation over j
inside the summation over k in equation (22).

In the RGBN, there are two linear regimes. Either
� y�� � y or � y�� � 0 depending on the value of y.
Clearly, the idea can be generalized to any number of
regimes and the only constraint on each regime is that
it should be linear so that exact Gibbs sampling is
possible. (By using a few linear regimes we can crudely
approximate units whose output is a smooth nonlinear
function of y (Frey 1997) and still perform exact Gibbs
sampling.) If we use two constant regimes and replace
� y�� by a binary output s which is one when y is positive
and zero otherwise we get a `probit' belief net that is
very similar to the logistic belief net described in ½ 5
but has the advantage that the lateral connection trick
can be used for perceptual inference.

Probit units and linear or recti¢ed linear units can
easily be combined in the same network by making
the output of a unit of one type contribute to the top-
down expectation, ŷ of a unit of the other type. They
can also be combined in a more interesting way. The
discrete output of a probit unit si can multiply the
output of a linear unit yj and exact Gibbs sampling is
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Figure 8. Generative weights of a three-layered RGBN after being trained on the noisy bars problem. (a) Weights from the
top-layer hidden unit to the 24 middle-layer hidden units. (b) Biases of the middle-layer hidden units. (c) Weights from the
hidden units to the 666 visible array, arranged in the same manner as in (a).
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still feasible. This allows the probit unit to decide
whether yj should be used without in£uencing the
value of yj if it is used. This is useful if, for example, yj
represents the size of an object and si represents
whether it exists.

If a probit unit and a linear unit share the same y
value their combination is exactly a recti¢ed linear
unit. If they merely share the same ŷ value but use inde-
pendent local noise to get di¡erent y values, we get a
softer blending of the linear and the constant regime.

Generative models for discovering sparse distributed representations G. E. Hinton and Z. Ghahramani 1187

Phil.Trans. R. Soc. Lond. B (1997)

Figure 9. (a) Generative weights of a factor analyser with
24 hidden units trained on the same data as the RGBN. (b)
Generative weights of a mixture of 24 Gaussians trained on
the same data.

Figure 10. (a) Sample data from the simpli¢ed stereo
disparity problem. The top and bottom row of each 2618
image are the inputs to the left and right eye, respectively.
Notice that the high pixel noise makes it di¤cult to infer the
disparity in some images. (b) Sample outputs generated by
the model after learning.
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It is also feasible to combine a generalization of the
probit unit that uses its y value to pick deterministically
one of m possibilities with a generalization of the linear
unit that has m di¡erent linear regimes. This is a
generative version of the mixture of experts model
(Jacobs et al. 1991).

The RGBN is a particularly interesting case because
the in¢nite density of � y�� at zero means that it is very
cheap, in coding terms, for units to have outputs of
zero, so the network develops sparse representations.
Each hidden unit can be viewed as a linear basis func-
tion for representing the states in the layer below, but
only a subset of these basis functions are used for a
given data point. Because the network can select which
basis functions are appropriate for the data, it can tailor
a basis function to a rare, complex feature without
incurring the cost of representing the projection on to
this basis function for every single data point. Other
methods for developing sparse representations
(Olshausen & Field 1996; Lee & Seung 1997) rely on
generative models that have a non-Gaussian local
noise model for the hidden units, so the lateral connec-
tion trick does not work when they are generalized to
multiple hidden layers.

It remains to be seen how RGBNs fare on larger,
more realistic datasets. We hope that they will be able
to discover many di¡erent sources of information
about properties like surface depth and surface orienta-
tion in natural images and that their method of
performing perceptual inference will combine these
di¡erent sources correctly when interpreting a single
image.

It is possible that the number of iterations of Gibbs
sampling required will increase signi¢cantly with the
size of the input and the number of layers. This would
certainly happen if interpreting an image was a typical
combinatorial optimization problem in which the best
solution to one part of the problem considered in isola-
tion is usually incompatible with the best solution to
another part of the problem.This is called a `frustrated'
system and is just what vision is not like. It is generally
easier to interpret two neighbouring patches of an
image than to interpret one patch in isolation because
context almost always facilitates interpretation.
Imagine two separate networks, one for each image
patch. When we interconnect the networks, they
should settle faster, not slower. Simulations will demon-
strate whether this conjecture is correct.

An interesting way to reduce the time required for
Gibbs sampling is to initialize the state of the network
to an interpretation of the data that is approximately
correct. For data that has temporal coherence this
could be done by using a predictive causal model for
initialization. For data that lack temporal coherence it
is still possible to initialize the network sensibly by
learning a separate set of bottom-up connection
strengths which are used in a single pass for initializa-
tion. These connection strengths can be learned using
the delta rule, where the results of Gibbs sampling
de¢ne the desired initial states. The initialization
connections save time by caching an approximation to
the results of Gibbs sampling on previous, similar data.
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APPENDIX 1. DETAILS OF GIBBS
SAMPLING

To perform Gibbs sampling in a recti¢ed Gaussian
belief net we need to select stochastically a value for
the unrecti¢ed state yj of each hidden unit according
to its probability density given the unrecti¢ed states of
all the other units. For simplicity, we will call this
conditional probability density p( yj). The energy
corresponding to p( yj) is given by equation (18),
which can be decomposed into two di¡erent quadratic
energy terms associated with negative and positive
values of yj :

E( yjj yj 4 0) � ( yj ÿ ŷj)
2

2�2
j
� c (26)
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Figure 11. Generative weights of a three-layered RGBN
after being trained on the stereo disparity problem. (a)
Weights from the top-layer hidden unit to the 24 middle-
layer hidden units. (b) Biases of the middle-layer hidden
units. (c) Weights from the hidden units to the 2618
visible array.
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E( yjj yj > 0) � ( yj ÿ ŷj)
2

2�2j

�P
i

( yi ÿ yjgji ÿ�h 6� j� yh��ghi)2
2�2i

,
(27)

where c is a constant that ensures that the two energy
terms are equal at yj � 0. Equation (27) can be re-
arranged as a quadratic in yj :

E( yjj yj > 0) � ( yj ÿ �j)
2

2�2j
� c 0, (28)

where

�2j �
�

1
�2j
�P

i

g2ji
�2i

�ÿ1
, (29)

�j � �2j
�

ŷj
�2j
�P

i

( yi ÿ�h 6� j� yh��ghi)gji
�2i

�
. (30)

We will refer to the Gaussian with mean ŷj and
variance �2j , which de¢nes the density for negative
values of yj, as GN and the Gaussian with mean �j and
variance �2j corresponding to positive values of yj as GP.

We now describe two methods of producing exact
samples from p( yj) assuming that we have primitives
that can sample from Gaussian, binomial and exponen-
tial random variables (see Devroye (1986) for a review
of basic sampling methods). Associated with each
method are also heuristics for selecting when the
method is applicable and e¤cient given particular
values of ŷj, �j, �j and �j.

(a) Method I

If ŷj < 0 and �j > 0 then p( yj) is bimodal: GN has
most of its mass below zero and GP has most of its mass
above zero (as in the example shown in ¢gure 5). In this
case, we can use a procedure based on the idea of rejec-
tion sampling from a mixture of GN and GP, which is
fairly e¤cient.

(i) Compute the densities of GN and GP at zero. (ii)
Sample from a mixture of GN and GP where the mixing
proportions are given by mN � GP(0)=(GN(0)� GP(0))
and mP � 1ÿ mN. (iii) Reject the sample and go back
to step (ii) if the sample came from GN and was positive
or if it came from GP and was negative; otherwise,
accept the sample and terminate.

Since the probability of rejecting a sample is less than
0.5, the mean time for this procedure to produce an
accepted sample from p( yj) is at most two steps.

(b) Method II

If ŷj > 0 or �j < 0 then it becomes necessary to
sample from the tail of GN, GP or both, and the above
procedure may be very ine¤cient. The following is a
more e¤cient procedure which can be used in this case.

(i) Compute the mass of GN below 0, weighted by the
mixing proportion as previously de¢ned

MN � mN

�0
ÿ1

GN( y)dy �31�

and similarly for the mass of GP above zero. (Of course,
this integral cannot be solved analytically and will
require a call to the erf function.)

(ii) With probability MN=(MN �MP) stochastically
decide to sample from the negative side of GN, otherwise
select the positive side of GP. Call this selection G and
the side we want to sample from the c̀orrect side' of G.

(iii) If the correct side of G has a substantial prob-
ability mass, for example, if G � GN and ŷj=�j <1/2,
then sample from G repeatedly, accepting the ¢rst sam-
ple that comes from the correct side of G.

(iv) If the correct side of G does not have a substan-
tial probability mass, that is, if it is the `tail' of a
Gaussian, then we upper bound it by an exponential
distribution and again use rejection sampling. Assum-
ing GP was selected in step (ii), let F( y) be an
exponential density in y: F( y) � (1=�)eÿy=�, with
decay constant � � ÿ�2j =�j, chosen to match the decay
of the Gaussian tail at zero. (To sample from GN we
simply reverse the sign of y and de¢ne � in terms of �j
and ŷj.) Sample y from F( y) until y is accepted, where
the acceptance probability is G( y)F(0)/F( y)G(0). This
acceptance probability is obtained by scaling the Gaus-
sian tail to match the exponential at y � 0, and then
computing the ratio of the scaled Gaussian tail at y to
the exponential at y.
The condition in step (iii) of this method ensures that

the mean time to produce an accepted sample from
p( yj) will be at most about three steps. For step (iv)
the quality of the exponential bound (and therefore
the mean number of samples until acceptance)
depends on how far in the tail of the Gaussian we are
sampling. For a tail starting from 1/2 standard devia-
tions from the mean of the Gaussian, the acceptance
probability for the exponential approximation is on
average about 0.4, and this probability increases for
Gaussian tails further from the mean.

Finally, we should point out that these are just some
of the methods that can be used to sample from p( yj).
Implementations using other sampling methods, such
as adaptive rejection sampling (Gilks & Wild 1992),
are also possible.
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